Key Features

- Supports 2x10GbE configuration
- PCI Express* (PCIe) v3.0, x8
- Exceptional low-power controllers
- Network Virtualization offloads including VXLAN, GENEVE, NVGRE, MPLS, and VXLAN-GPE with Network Service Headers (NSH)
- Intel® Ethernet Flow Director for hardware based application traffic steering
- Dynamic Device Personalization (DDP) enables increased packet processing efficiency for NFV and Cloud deployments
- Data Plane Development Kit (DPDK) optimized for efficient packet processing
- Excellent small packet performance for network appliances and Network Functions Virtualization (NFV)
- Intelligent offloads to enable high performance on servers with Intel® Xeon® processors
- I/O virtualization innovations for maximum performance in a virtualized server

Overview

The Intel® Ethernet Controller X710 offers dual-port 10GbE, and is backwards compatible to 1GbE.

The X710 is part of the Intel® Ethernet 700 Series, the foundation for server connectivity, providing broad interoperability, critical performance optimizations, and increased agility for Communications, Cloud, and Enterprise IT network solutions.

- **Interoperability** - Multiple speeds and media types for broad compatibility backed by extensive testing and validation.
- **Optimization** - Intelligent offloads and accelerators to unlock network performance in servers with Intel® Xeon® processors.
- **Agility** - Both Kernel and Data Plane Development Kit (DPDK) drivers for scalable packet processing.

Built on more than 35 years of continuous Ethernet innovations, the Intel® Ethernet 700 Series delivers networking performance across a wide range of network port speeds through intelligent offloads, sophisticated packet processing, and quality open source drivers.
All Intel® Ethernet 700 Series Network Controllers include these feature-rich technologies:

**Flexible and Scalable I/O for Virtualized Infrastructures**

Intel® Virtualization Technology (Intel® VT), delivers outstanding I/O performance in virtualized server environments.

I/O bottlenecks are reduced through intelligent offloads such as Virtual Machine Device Queues (VMDQ) and Flexible Port Partitioning, using SR-IOV with a common Virtual Function driver for networking traffic per Virtual Machine (VM), enabling near-native performance and VM scalability. Host-based features supported include:

- **VMDq for Emulated Path:** VMDQ, enables a hypervisor to represent a single network port as multiple network ports that can be assigned to the individual VMs. Traffic handling is offloaded to the network controller, delivering the benefits of port partitioning with little to no administrative overhead by the IT staff.

- **SR-IOV for Direct Assignment:** Adapter-based isolation and switching for various virtual station instances enables optimal CPU usage in virtualized environments.
  - Up to 128 VFs, each VF can support a unique and separate data path for I/O related functions within the PCI Express* hierarchy.
  - Use of SR-IOV with a networking device, for example, allows the bandwidth of a single port (function) to be partitioned into smaller slices that can be allocated to specific VMs or guests, via a standard interface.

- **Intel® Ethernet Adaptive Virtual Function (Intel® Ethernet AVF):** This driver eases SR-IOV hardware upgrades or changes, and preserves base mode functionality in hardware and software. Customers deploying mass-scale VMs or containers for their network infrastructure now have a common Virtual Function (VF) driver. This driver supports a Base Mode and an advanced set of features on the Intel® Ethernet 700 Series.

- **Enhanced Network Virtualization Overlays (NVO):** Network virtualization has changed the way networking is done in the data center, delivering accelerations across a wide range of tunneling methods. VXLAN, GENEVE, NVGRE, MPLS, and VXLAN-GPE with NSH Offloads: These stateless offloads preserve application performance for overlay networks, and the network traffic can be distributed across CPU cores, increasing network throughput.

**Flexible Port Partitioning (FPP)**

FPP leverages the PCI-SIG SR-IOV specification. Virtual controllers can be used by the Linux® host directly and/or assigned to virtual machines.

- Assign up to 63 Linux host processes or virtual machines per port to virtual functions.
- Control the partitioning of per port bandwidth across multiple dedicated network resources, ensuring balanced QoS by giving each assigned virtual controller equal access to the ports bandwidth.

Network administrators can also rate limit each of these services to control how much of the pipe is available to each process.

**Greater Intelligence and Performance for NFV and Cloud deployments**

Dynamic Device Personalization (DDP) customizable packet filtering, along with enhanced Data Plane Development Kit (DPDK), support advanced packet forwarding and highly-efficient packet processing for both Cloud and Network Functions Virtualization (NFV) workloads.

- DDP enables workload-specific optimizations, using the programmable packet-processing pipeline. Additional protocols can be added to the default set to improve packet processing efficiency that results in higher throughput and reduced latency. With the 700 Series, new protocols can be added or modified on-demand, and applied at run-time using Software Defined Firmware or APIs, eliminating the need to reset or reboot the server. This not only keeps the server and VMs up, running, and computing, it also increases performance for VNFs that process network traffic that is not included in the default firmware.

**Advanced Traffic Steering**

Intel® Ethernet Flow Director (Intel® Ethernet FD) is an advanced traffic steering capability. It consists of a large number of flow affinity filters that direct receive packets by their flows to queues for classification, load balancing, and matching between flows and CPU cores.

Steering traffic into specific queues can eliminate context switching required within the CPU. As a result, Intel® Ethernet FD significantly increases the number of transactions per second and reduces latency for cloud applications like memcached.

Download DDP Profiles

- DPDK provides a programming framework for Intel® processors and enables faster development of high-speed data packet networking applications.

2
**PERFORMANCE**

- 10Gb Throughput: Wire-rate down to 64 bytes
- Standard Linux* Stack Latency: ~8 µs

**HOST INTERFACE FEATURES**

- PCI Express* 3.0; x8, x4, x1
- PCI Power Management/ ACPI Extensions
- TLP Processing Hint (TPH) Support
- MSI-X Support

**NETWORK INTERFACE FEATURES**

- 10GbE Interfaces: KR, KX44, SFPI, XAUI
  - Supports SFP+ connector
- 1GbE Interfaces: KX, SGMII

**VIRTUALIZATION INTERFACE FEATURES**

- Features: Implementation
  - Emulated Support: Driver Optimizations and VMDQ enablement
  - Direct Assignment Support: PF and VF assignment with SR-IOV
  - Virtual Bridging Support: VEPA/802.1Qbg
  - Virtual Functions: Up to 128 per device
  - Network Virtualization: VXLAN, MACinUDP, NVGRE, IPIngRE

**MANAGEMENT INTERFACE FEATURES**

- IPMI & BMC pass through
- OS2BMC
- MCTP (SMBus & PCIe)
- DMTF NC-SI Pass-Through
- SMBus Pass-Through
- Advanced Filtering Capabilities (IPv4, IPv6)
- PXE FLASH Interface Support
- SNMP
- RMON Statistic Counters

**STORAGE INTERFACE FEATURES**

- iSCSI Acceleration
- iSCSI boot

**TCP/IP/L2 FEATURES**

- Receive Side Scaling (RSS) for TCP and UDP traffic
- Large Send Off-load (LSO) / Generic Send Off-load (GSO) including encapsulated traffic
- TCP/UDP/IP/SCTP Checksum Off-load including encapsulated traffic
- IPv4, IPv6

**ADDITIONAL FEATURES**

- Enhanced Transmission Selection (draft IEEE 802.1az)
- Priority Flow Control (draft IEEE 802.1Qbb)
- Data Center Bridging (DCB/DCB-X) Support; up to eight traffic classes
- Jumbo Frame Support—Up to 9.5 KB (9728 Bytes)
- VLAN Support
  - Package: 25 mm x 25 mm FC-BGA
  - Power: 3.82 W typical power for 2x40
- External Power Supply Voltages: 3.30 Vdc, 0.85 Vdc
- Safety and Regulatory: FCC Class B, UL, CE, VCCI, BSMI, CTICK, KCC, CSA

**ENVIRONMENTAL**

- Operating Temperature: 0 °C to 50 °C (32 °F to 131 °F)

**CERTIFICATIONS**

- RoHS Compliant
- FCC Class A

**SUPPORTED OPERATING SYSTEMS**

The Feature Support Matrix for Intel® Ethernet 700 Series Controllers includes a complete list of supported network operating systems.

**PRODUCT ORDER CODES**

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Product Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel® Ethernet Controller X710-BM2</td>
<td>FTX710-BM2</td>
</tr>
</tbody>
</table>

**Warranty**

Standard Intel limited warranty, one year. See Intel terms and conditions of sale for more details.

**Customer Support**

For customer support options in North America visit:
intel.com/content/www/us/en/support/contact-support.html

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from published specifications.

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation. All rights reserved.