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1 Abstract 

A common use of low power microcontrollers is in RFID tags. One of the modulation 
schemes typically used by RFID tags is Manchester encoding. Manchester encoding is 
a form of binary phase shift key modulation. This paper presents a maximum 
likelihood method of decoding Manchester-encoded data. Maximum likelihood 

decoding tracks bit rate offset, tolerates duty cycle distortion, and is more robust in 
the presence of noise than edge decoding.  
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2 Introduction 

Manchester encoding is a form of binary phase shift key modulation where the carrier 
is the bit rate clock (a square wave) phase shifted by zero or 180° depending on the 
data. Manchester-encoded waveforms are shown in Figure 1. In the Manchester data 
waveform, a zero bit is encoded with a falling edge at bit center and a one bit with a 

rising edge at bit center. The opposite may also be used. 

Figure 1. Waveforms of NRZ Data and Clock and the Corresponding Manchester-
encoded Data 

0 1 1 0 0 01 1

Clock

NRZ Data

Manchester Data

 

The ideal undistorted waveform that the application receives for each bit should be 
high for one half of the bit period and low for the other half. Which half is high and 

which half is low depends on the state of the transmitted bit. In reality, the received 
waveform might be noisy or distorted. The relative bit rate between transmitter and 

receiver may be slightly off. The task of maximum likelihood decoding is to choose the 
most likely transmitted bits given the waveform received. For this, the application 
uses Bayes theorem: 

   
 
 y

x
xyyx

P
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|P|P   

…where x was received and y was transmitted. This is a very powerful theorem. It 

means that maximum likelihood decoding estimates the bits most likely transmitted 
given the waveform actually received and prior knowledge about the system. If the 
application has some prior knowledge about the probability of a one versus a zero 
being transmitted and what the ideal received waveform should look like for each, the 
application can build a table ahead of time containing the most likely transmitted bit 

for each possible received waveform. The application can then index the table using 
the actual received waveform to obtain the most likely transmitted bits. 
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3 Methods 

This section presents the methods used to implement the maximum likelihood 
Manchester decoder. The requirements for the decoder are: 

 Bit rate:  500 kbps ±3 % 

 Duty cycle distortion: ±350 ns 

3.1 Sampling 

There are multiple options for using the Intel® Quark™ microcontroller D1000to 
sample the received waveform: 

 Comparator – this technique has the advantage of accepting analog waveforms. 

However, software must either poll the comparator or take an interrupt when the 
comparator detects a threshold crossing. In either case, it will not be possible to 
decode high bit rates in real time since there is no elasticity in the hardware, and 
software must be ready for each transition ahead of time. 

 ADC – this technique also has the advantage of accepting analog waveforms. 
Moreover, it produces M-ary samples where M = 2N and N could be from 6 to 12 
bits of resolution. This could prove extremely powerful if the application has some 

prior knowledge about the linear system (i.e. a linear model of the channel and 
receiver). However, once again it will not be possible to decode high bit rates in 
real time due to the large number of CPU cycles required to do this type of 
processing vs. the number of CPU cycles available in each bit period. 

 SPI – this technique has the disadvantage of requiring a digital input. However, it 
has the advantage of elasticity provided by a FIFO implemented in hardware; up 
to 128 binary samples can be buffered in the FIFO. Software can then fall behind 

in the short term so long as it can keep up with the overall sample rate. 

Due to the high bit rate, the comparator and ADC sample methods are off the table. 
This application will use SPI to sample the incoming signal, which frees up CPU cycles 
while the hardware FIFO is buffering samples. The next item is to decide on a sample 

rate (i.e. the number of samples taken in each bit period). Rather than computing 
likelihood in real time, which requires a larger number of CPU cycles, this application 
pre-computes the likelihood and stores it in a lookup table. This application uses the 
waveform samples to index the table. The group of samples used to index the table is 
commonly referred to as a symbol. A symbol contains a group of samples spanning 
one or more bit periods. If the symbol spans one bit period, the decision about what 
was transmitted will be a binary decision (for example, one of two states). If the 

symbol spans two bit periods, the decision will be 4-ary (for example, one of four 
states). If the symbol spans three bit periods, the decision will be 8-ary and so forth 

The advantage of using symbols that span multiple bits is that the number of CPU 
cycles available to process each symbol increases with the number of bits spanned. 

Since decisions based on likelihood for each possible symbol have been pre-computed, 
the cycles required to process a symbol are independent on the number of bit periods 
spanned, and it is to the application’s advantage work with multi-bit symbols.  
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However, the amount of memory available to hold the look-up table is limited, so the 

application needs to constrain the number of bits in a symbol. For best performance, 
the application should locate the table in SRAM. This puts a practical constraint on the 
size of the table at less than 4 kB1 and limits the symbol size to less than 12 bits. 

As shown later, the question of likelihood also bears on the choice of sample rate. In 

order to assess likelihood, it’s necessary to measure the distance between all possible 
symbols and the most likely symbols. The most likely symbols are those 
corresponding to possible transmitted states (for example, 0 or 1 for binary symbols; 
00, 01, 10 or 11 for 4-ary symbols; etc.) The greater the distance between the most 
likely symbols, the lower the probability of a received symbol having equal distance to 
more than one of the most likely symbols. In other words, there will be fewer ties 

when making decisions about which bits were transmitted. If the number of possible 
symbols is large (for example, the number of samples per symbol is large) and the 
number of possible transmitted states is few, the distance between the most likely 

symbols will be large. This condition corresponds to a high sample rate. 

Another reason for using a high sample rate is to correct for bit rate offset by tracking 

symbol phase. In order to track symbol phase, the application needs to compare the 
likelihood of a received symbol with one shifted by a sample. The application then 
adjusts the symbol window toward the more likely symbol – phase shifted or not. If 
the number of samples per bit is too small, it will be impossible to distinguish between 
phase error and a different transmitted state. This condition is illustrated in Figure 2 
(a). Increasing the sample rate remedies the condition as shown in Figure 2 (b). 

Ultimately, the application needs to balance the choice of sample rate to the 
competing goals of maximizing CPU cycles per symbol, maximizing distance between 
most likely symbols, and constraining the size of the look-up table. The optimal 
balance depends on bit rate. The application needs to budget about 100 CPU cycles 

per symbol. At a bit rate of 500 kbps and CPU clock frequency of 32 MHz, 10-bit 4-ary 
symbols strike a good balance at 2 bits per symbol, 5 samples per encoded bit, and a 

1024 entry lookup table. 

The SPI sample rate is programmable in even divisions of the CPU clock frequency. 
The application needs the following sample rate: 

𝑓𝑆 ≥ 𝜌𝑓𝐵 

…where 𝜌 equals the minimum number of samples per bit and 𝑓𝐵 is the bit rate. At five 

samples per bit and a 500 kbps bit rate, the application needs a sample rate of at 
least 2.5 MSps. A divisor of 12 yields a sample rate of 2.667 MSps. This produces 5 ⅓ 

samples per bit or 10 ⅔ samples per 4-ary symbol. 

                                                   

1 While there is 8 kB of SRAM available, reprogramming flash can require up 

to 4 kB of buffer allocated on the stack. Also, less than 4 kB of data flash is 

available for storing initialized data. 
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As shown in Figure 2, at four samples per bit, a binary 1 waveform is shown that lags 
by one sample cannot be distinguished from a binary 0 waveform that leads by one 
sample. At five samples per bit, a waveform that lags or leads by one sample is closer 
to its transmitted waveform than it is to the alternate waveform.  

Figure 2. Tracking Symbol Phases 

One sample phase lead

One sample phase lag

Sample times

S = 11

S = 00

Ŝ = ??

One sample phase lead

One sample phase lag

Sample times

S = 11

S = 00

Ŝ = 11

Ŝ = 00

(a) 4 samples per symbol:

(b) 5 samples per symbol:

 

3.2 Likelihood Lookup 

Ideal models for the 4-ary symbols are shown in Figure 3. The middle model for each 
4-ary state (i.e. 00, 01, 10 and 11) corresponds to perfect phase alignment. Since 
phase can be adjusted only in discrete one sample increments, symbols that lead or 

lag in phase by less than ½ sample are equally likely and should be given the same 
weight as those with perfect alignment. These leading and lagging models are shown 
below and above the models with perfect alignment. Symbols that lead or lag by more 
than ½ sample can be brought closer to perfect alignment by shifting phase one or 

more samples. These must be weighted less than ideal symbols. The weight that the 
application assigns to each possible symbol from binary 0000000000 to 1111111111 
should reflect how closely correlated it is to the most closely correlated ideal model. 

Logically, correlation can be expressed as the number of matching samples: 

𝑊𝑆 = ∑𝑅[𝑛] ⊕ 𝑌𝑆[𝑛]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
9

𝑛=0
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…where 𝑊𝑆 is the correlation strength or weight corresponding to ideal symbol model 

for transmit state 𝑆, 𝑅[𝑛] is the 𝑛th sample of the received symbol, 𝑌𝑆[𝑛] is the 𝑛th 
sample of the ideal symbol model for transmit state 𝑆, and ⊕ is the exclusive or 

operator. 

As shown in Figure 3, at 10 ⅔ samples per symbol, each of the 4-ary symbols has 

three ideal models. Perfect phase alignment is shown in the middle model. Top models 
correspond to ⅓ sample of phase lag. Bottom models correspond to ⅓ sample phase 

lead. All twelve models carry the maximum weight of 10. 

Figure 3. Sample Phases 

1 1 1 0 0 1 1 1 0 0

1 1 0 0 0 1 1 1 0 0

1 1 0 0 0 1 1 0 0 0

00 Symbol Models
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The likelihood lookup table contains 1024 entries (one for each possible received 
symbol 𝑅). Each entry contains the maximum correlation weight between the symbol 

𝑅 and the ideal symbol models: 

𝑊𝑅 = max(𝑊00,𝑊01,𝑊10,𝑊11) 

as well as the decision corresponding to the highest weight: 

𝑆𝑅 ∈ {00, 01, 10, 11} 

The application indexes the table with each received symbol to obtain a decision 
regarding the transmitted bits and a weight expressing the likelihood that that these 

bits were transmitted given that this symbol was received. 

3.3 Phase Tracking 

Since the number of samples per symbol is fractional but the time resolution of the 

sampling window is discrete, each time the application moves the symbol sample 
window forward it will be either lagging or leading in phase. For example: assuming 
perfect symbol alignment at the start, advancing the symbol sample window forward 
by 10 samples results in the next symbol lagging by ⅔ sample in phase. Advancing 11 

samples results in the next symbol leading by ⅓ sample in phase. Furthermore, the 

application requirements state that bit rate offset between transmitter and receiver 
can be as high as ±3 %. Therefore, instead of always advancing the symbol sample 
window by some predetermined pattern (for example, 11, 11, 10 samples), the 

application will test both 10 and 11 sample advancements to see which results in the 
greatest correlation strength. This allows the application to track the symbol phase in 
the presence of bit rate offset. 

3.4 Synchronization 

In order to properly decode symbols, the application must first synchronize the symbol 

sample window with the symbol boundaries in the received stream of samples. Figure 
4 illustrates the procedure. Assume that the message begins with the symbol that 
encodes information bits 11 after receiving all zero samples prior to that. The 
application receives groups of ten samples from the SPI peripheral. Buffering up at 
least 20 samples, the application slides a ten-sample window over the 20 buffered 

samples, seeking alignment with the first symbol in the message. The first three 
waveforms show the ideal symbol models corresponding to the 11 state. The next ten 
waveforms show the ten-sample window obtained with each shift of the window as it 
slides over the twenty-sample buffer. The weight of each ten-sample window and its 
phase relative to the true start of message are listed in columns to the right of the 
waveforms. The perfectly aligned window and ideal symbol model are indicated in bold 
typeface. It can be seen that the highest weight of an unaligned window is eight. Any 

weight higher than this indicates that synchronization has been achieved. For this 
application, a value of nine was selected; this is large enough to ensure 
synchronization while tolerating one sample error. If none of the ten sample windows 
carry a weight of at least nine, the next ten-sample group received from SPI is 
appended as the oldest ten-sample group is ejected from the buffer and the next ten 
windows are tested. This continues until synchronization is achieved.  
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After synchronization is achieved, the symbol window advances 10 or 11 samples with 
each ten-sample group received from SPI. Eventually, the window will reach the edge 
of the twenty-sample buffer. When this happens, an additional ten-sample group from 
SPI is appended before the symbol window advances. 

As shown in Figure 4, ten phase shifts of a ten-sample symbol window over 19 
samples prior to and including the start of a message. Ideal symbol models for the 
known message preamble are shown in the first three rows. Bold highlighted rows are 
a phase aligned. 

Figure 4. Ten Phase Shifts of a Ten Sample Symbol Window 
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011100
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4 Results 

The maximum likelihood Manchester decoder described in previous sections was 
tested using an Agilent* 33522A Arbitrary Waveform Generator to synthesize a known 
good 32-byte message with embedded 16-bit CRC. The firmware decodes the 
message and verifies the CRC. It then prints a message to the UART indicating how 

many bytes were received, the message content, and any errors encountered. Figure 
5 shows the beginning portion of a test message. The 20 µs pulse that precedes the 
message is used to wake the D1000 from the 2 µA standby state. Some protocols, 
such as IEEE Std. 802.3, provide a preamble with which receivers can synchronize. In 

this case, the preamble can be used for both wakeup and synchronization and no 
wakeup pulse is required. 

Tests of duty cycle distortion are shown in Figure 6 and Figure 7. In Figure 6, the high 

phase of the signal is stretched and the low phase shortened by 357 ns. In Figure 7, 
the low phase of the signal is stretched and the high phase shortened by 357 ns. In 
both cases, decoded messages were free of errors. 

Tests of bit rate offset are shown in Figure 8 and Figure 9. In Figure 8, bit rate was 

decreased by 3.0 %. In Figure 9, bit rate was increased by 3.5 %. In both cases, 
decoded messages were free of errors. 

Finally, sample error injection at rates of 0.005, 0.01, and 0.015 showed that the 

proposed method is indeed robust in the presence of noise. No message errors 
occurred in more than 4000 messages decoded in the 0.005 and 0.01 error rate 
cases. The message error rate was 0.266 in the 0.015 sample error rate case. 

As shown in Figure 5, oscilloscope waveforms of the received signal in yellow and the 

core current in red show start of the Manchester-encoded message. A 20 µs wakeup 
pulse precedes the Manchester encoded message. 
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Figure 5. Start of Manchester Encoded Message 
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Figure 6. Oscilloscope Waveforms of Received Signal in Yellow and Core Current in Red 
Showing +357 ns Duty Cycle Distortion 
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Figure 7. Oscilloscope Waveforms of Received Signal in Yellow and Core Current in Red 
Showing -357 ns Duty Cycle Distortion 
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Figure 8. Oscilloscope Waveforms of Received Signal in Yellow and Core Current in Red 
Showing -3.0 % Bit Rate Offset 
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Figure 9. Oscilloscope Waveforms of Received Signal in Yellow and Core Current in Red 
Showing +3.5 % Bit Rate Offset 
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5 Discussion 

During the synchronization phase, ten different phase shifts of the symbol sample 
window are tested for each new symbol received. The time required to complete these 
computations is greater than a symbol period. The receive FIFO in the SPI peripheral 
provides the elasticity needed to prevent loss of data. However, there is a limit to the 

amount of time the application can spend in the synchronization phase before the 
FIFO overflows. While the developers checked for an overflow condition and found 
none, the maximum time in the synchronization phase before the FIFO overflows has 
not been characterized. This could become an issue if the synchronization window 

opens long before a message arrives. If this situation is unavoidable, a check of each 
new symbol for a non-zero condition should be used as a necessary pre-requisite to 
enter the synchronization phase. This non-zero check is much faster than the 

synchronization check and will prevent FIFO overflows. 

For this application, 10-bit 4-ary symbols were selected because they strike a good 
balance between competing goals of maximizing CPU cycles per symbol, maximizing 
distance between most likely symbols, and constraining the size of the look-up table. 

The optimal balance depends on bit rate, the amount of memory that can be allocated 
to the likelihood lookup table, and the CPU clock frequency. At lower bit rates, 10-bit 
2-ary symbols would increase the distance between most likely symbols, improving 
robustness to errors and distortion. Alternately, if a larger table is possible, 12-bit 4-
ary symbols would have the same effect to a lesser extent without compromising bit 
rate. 

Bit rate offset is limited to ±3 % in this example. Larger offsets might also be 

accommodated with an increased number of likelihood tests at larger phase shifts. 
However, as bit rate offset increases, the mismatch between received and ideal 
symbol models also increases, reducing the likelihood that proper alignment can be 
maintained. Higher sample rates may mitigate this effect somewhat. Further 

experimentation is needed in order to characterize performance at larger bit rate 
offsets and higher sample rates. 

 

§ 
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6 Conclusion 

This paper presented a method for decoding Manchester-encoded data in the presence 
of noise and distortion. The selected method consists of over-sampling the received 
baseband waveform and looking up pre-computed likelihood and state decisions from 
a table. Prior to decoding, symbol synchronization is achieved by sliding a window 

over the received symbol stream until a strong likelihood indicates that a particular 
phase shift correctly aligns the symbol window with a transmitted symbol. Alignment 
is maintained during decoding by testing the likelihood of phase-leading and phase-
lagging symbol windows and choosing the alignment with the greatest likelihood. 

Real-time 500 kbps decoding was achieved with CPU clock frequency of 32 MHz. 
Furthermore, this method proved robust in the presence of bit rate offset, duty cycle 
distortion, and noise.  
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Appendix A – Maximum Likelihood 

Decoding Program 

The following assembly language source code is for the timer 0 interrupt service 

routine, which contains the maximum likelihood Manchester decoding algorithm. Timer 
0 was started when the trigger pulse was detected. Its expiration opens the 
synchronization window at ~10 µs prior to start of message. Once started, the SPI 
peripheral will deliver 160 10-bit symbols at a rate of 266667 symbols per second. 

The maximum likelihood lookup table man_lut is a 1024-byte table containing 

weights in bits 2-5 and decisions in bits 0-1. 
 

//////////////////////////////////////////////////////////////////////// 

  // define symbols and allocate storage for timer 0 interrupt handler 

  //////////////////////////////////////////////////////////////////////// 

  .global       timer0_interrupt_handler_stub 

  .extern       check_message 

  .extern       man_lut 

  .extern       error 

  .extern       PM_CMP_POL 

  .extern       PM_CMP_INTSTAT 

  .extern       PM_CMP_INT_EN 

  .extern       PM_CMP_PWR 

  .extern       LA_EOIR 

  .extern       T0_CTL_REG 

  .extern       T0_EOI 

  .extern       PM_CLK_EN 

  .extern       SM_SSIENR 

  .extern       SM_DR 

  .extern       SM_RISR 

  .set          MAXBITS,256      // maximum message 256 bits 

  .set          MINWEIGHT,(4*9+3)// minimum weight for synchronization 

  .set          T0_CLKEN,(1<<4)  // mask for timer 0 clock enable 

  .set          SPIM_CLKEN,(1<<1)//mask for SPI clock enable 

  .set          ERR_OVERFLOW,(1<<0)// mask for overflow error 

  .set          SM_BUSY,0        // SPI busy status bit 

  .set          SM_RXOIR,3       // SPI RX FIFO overflow status bit 

  .set          SM_RXFIR,4       // SPI RX FIFO full status bit 

  .bss 

  .align        4 

  .global       rx_buffer 

rx_buffer:  // storage for data bits 

  .space        MAXBITS/8       // maximum message in bytes 

  .global       rx_buffer_end 

rx_buffer_end: 

  .global       rx_buffer_next 

rx_buffer_next: // pointer to next location in data buffer 

  .space        4 
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  .text 

  .align        16 

timer0_interrupt_handler_stub:  // begin handler 

  pushl %eax                    // save context 

  pushl %ebx 

  pushl %ecx 

  pushl %edx 

  pushl %ebp 

  pushl %edi 

  pushl %esi 

  pushl %esi                    // reserve local variable on stack 

 

tm0_isr_stop_timer:  // stop timer and clear interrupts 

  xorl  %eax,%eax               // clear register 

  movl  %eax,T0_CTL_REG         // stop timer 

  movl  T0_EOI,%ebx             // clear interrupt from timer 

  movl  %eax,LA_EOIR            // clear interrupt from APIC 

  andl  $(~T0_CLKEN),PM_CLK_EN  // disable timer clock 

 

tm0_isr_start_spi:  // start SPI sampling 

  orl   $SPIM_CLKEN,PM_CLK_EN   // enable SPI clock 

  movl  $1,SM_SSIENR            // enable SPI 

  movl  %eax,SM_DR              // write dummy word to SPI TX FIFO 

   

tm0_isr_initial_values:  // initialize the various counters and pointers 

  lea   man_lut,%edi            // get pointer to maximum likelihood LUT 

  lea   rx_buffer,%esi          // get pointer to data buffer 

  movl  $0x3FF,%ebp             // 10-bit symbol mask 

  movl  %eax,error              // clear error flags 

  movb  $3,(%esp)               // initial data decision down counter 

 

tm0_isr_s0_symbol_0:  // get first symbol 

  btl   $SM_RXFIR,SM_RISR       // test RX FIFO full bit 

  jae   tm0_isr_s0_symbol_1     // loop until symbol is available 

  movl  SM_DR,%ebx              // read RX FIFO 

 

tm0_isr_s0_symbol_1:  // get second symbol 

  btl   $SM_RXFIR,SM_RISR       // test RX FIFO full bit 

  jae   tm0_isr_s0_symbol_1     // loop until symbol is available 

  shll  $10,%ebx                // make room for next symbol 

  orl   SM_DR,%ebx              // or in new symbol 

 

tm0_isr_s0_symbol_2:  // get third symbol 

  btl   $SM_RXFIR,SM_RISR       // test RX FIFO full bit 

  jae   tm0_isr_s0_symbol_2     // loop until symbol is available 

  shll  $10,%ebx                // make room for next symbol 

  orl   SM_DR,%ebx              // or in new symbol 

 

tm0_isr_s0_phi_0:  // get likelihood at 0 degrees 

  movb  $19,%cl                 // initial phase shift 

  movl  %ebx,%eax               // get last three symbols 

  shrl  %cl,%eax                // shift phase 

  andl  %ebp,%eax               // mask off all but phase shifted symbol 

  movb  (%edi,%eax,1),%dh       // get likelihood 

  cmpb  $MINWEIGHT,%dh          // does this weight meet the minimum? 

  jae   tm0_isr_s1_entry        // if so, start processing packet 

 

tm0_isr_s0_phi_1:  // get likelihood at +36 degrees 

  decb  %cl                     // decrement phase shift 
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  movl  %ebx,%eax               // get last three symbols 

  shrl  %cl,%eax                // shift phase 

  andl  %ebp,%eax               // mask off all but phase shifted symbol 

  movb  (%edi,%eax,1),%dh       // get likelihood 

  cmpb  $MINWEIGHT,%dh          // does this weight meet the minimum? 

  jae   tm0_isr_s1_entry        // if so, start processing packet 

 

tm0_isr_s0_phi_2:  // get likelihood at +72 degrees 

  decb  %cl                     // decrement phase shift 

  movl  %ebx,%eax               // get last three symbols 

  shrl  %cl,%eax                // shift phase 

  andl  %ebp,%eax               // mask off all but phase shifted symbol 

  movb  (%edi,%eax,1),%dh       // get likelihood 

  cmpb  $MINWEIGHT,%dh          // does this weight meet the minimum? 

  jae   tm0_isr_s1_entry        // if so, start processing packet 

 

tm0_isr_s0_phi_3:  // get likelihood at +108 degrees 

  decb  %cl                     // decrement phase shift 

  movl  %ebx,%eax               // get last three symbols 

  shrl  %cl,%eax                // shift phase 

  andl  %ebp,%eax               // mask off all but phase shifted symbol 

  movb  (%edi,%eax,1),%dh       // get likelihood 

  cmpb  $MINWEIGHT,%dh          // does this weight meet the minimum? 

  jae   tm0_isr_s1_entry        // if so, start processing packet 

 

tm0_isr_s0_phi_4:  // get likelihood at +144 degrees 

  decb  %cl                     // decrement phase shift 

  movl  %ebx,%eax               // get last three symbols 

  shrl  %cl,%eax                // shift phase 

  andl  %ebp,%eax               // mask off all but phase shifted symbol 

  movb  (%edi,%eax,1),%dh       // get likelihood 

  cmpb  $MINWEIGHT,%dh          // does this weight meet the minimum? 

  jae   tm0_isr_s1_entry        // if so, start processing packet 

 

tm0_isr_s0_phi_5:  // get likelihood at +180 degrees 

  decb  %cl                     // decrement phase shift 

  movl  %ebx,%eax               // get last three symbols 

  shrl  %cl,%eax                // shift phase 

  andl  %ebp,%eax               // mask off all but phase shifted symbol 

  movb  (%edi,%eax,1),%dh       // get likelihood 

  cmpb  $MINWEIGHT,%dh          // does this weight meet the minimum? 

  jae   tm0_isr_s1_entry        // if so, start processing packet 

 

tm0_isr_s0_phi_6:  // get likelihood at +216 degrees 

  decb  %cl                     // decrement phase shift 

  movl  %ebx,%eax               // get last three symbols 

  shrl  %cl,%eax                // shift phase 

  andl  %ebp,%eax               // mask off all but phase shifted symbol 

  movb  (%edi,%eax,1),%dh       // get likelihood 

  cmpb  $MINWEIGHT,%dh          // does this weight meet the minimum? 

  jae   tm0_isr_s1_entry        // if so, start processing packet 

 

tm0_isr_s0_phi_7:  // get likelihood at +252 degrees 

  decb  %cl                     // decrement phase shift 

  movl  %ebx,%eax               // get last three symbols 

  shrl  %cl,%eax                // shift phase 

  andl  %ebp,%eax               // mask off all but phase shifted symbol 

  movb  (%edi,%eax,1),%dh       // get likelihood 

  cmpb  $MINWEIGHT,%dh          // does this weight meet the minimum? 
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  jae   tm0_isr_s1_entry        // if so, start processing packet 

 

tm0_isr_s0_phi_8:  // get likelihood at +288 degrees 

  decb  %cl                     // decrement phase shift 

  movl  %ebx,%eax               // get last three symbols 

  shrl  %cl,%eax                // shift phase 

  andl  %ebp,%eax               // mask off all but phase shifted symbol 

  movb  (%edi,%eax,1),%dh       // get likelihood 

  cmpb  $MINWEIGHT,%dh          // does this weight meet the minimum? 

  jae   tm0_isr_s1_entry        // if so, start processing packet 

 

tm0_isr_s0_phi_9:  // get likelihood at +324 degrees 

  decb  %cl                     // decrement phase shift 

  movl  %ebx,%eax               // get last three symbols 

  shrl  %cl,%eax                // shift phase 

  andl  %ebp,%eax               // mask off all but phase shifted symbol 

  movb  (%edi,%eax,1),%dh       // get likelihood 

  cmpb  $MINWEIGHT,%dh          // does this weight meet the minimum? 

  jae   tm0_isr_s1_entry        // if so, start processing packet 

 

tm0_isr_s0_spi_check:  // check for SPI still sampling 

  btl   $SM_BUSY,SM_SR          // check if SPI is still sampling 

  jb    tm0_isr_s0_symbol_2     // if so, get next symbol from RX FIFO 

  jmp   tm0_isr_exit            // otherwise, exit now 

 

  .align        16 

tm0_isr_s1_symbol_0:  // get symbol 

  btl   $SM_RXFIR,SM_RISR       // test RX FIFO full bit 

  jae   tm0_isr_s1_symbol_0     // loop until symbol is available 

  shll  $10,%ebx                // make room for next symbol 

  orl   SM_DR,%ebx              // or in new symbol 

 

tm0_isr_s1_phi_0:  // get likelihood at 0 degrees 

  movl  %ebx,%eax               // get last three symbols 

  shrl  %cl,%eax                // shift phase 

  andl  %ebp,%eax               // mask off all but phase shifted symbol 

  movb  (%edi,%eax,1),%dh       // get likelihood 

 

tm0_isr_s1_entry:  // entry point to decode phase 

  movb  %cl,%ch                 // tentative optimal phase shift 

 

tm0_isr_s1_phi_1:  // get likelihood at +36 degrees 

  decb  %cl                     // decrement phase shift 

  movl  %ebx,%eax               // get last three symbols 

  shrl  %cl,%eax                // shift phase 

  andl  %ebp,%eax               // mask off all but phase shifted symbol 

  movb  (%edi,%eax,1),%dl       // get likelihood 

  cmpb  %dl,%dh                 // is shifted symbol more or equally likely? 

  ja    tm0_isr_data_bit        // if not, store most likely data bit 

  movb  %dl,%dh                 // if so, update weight 

  movb  %cl,%ch                 // update optimal phase shift 

 

tm0_isr_data_bit:  // store the data bits 

  shrb  $1,%dh                  // shift the hard decision MSB into carry 

  rclb  $1,(%esi)               // shift it into the data byte 

  shrb  $1,%dh                  // shift the hard decision LSB into carry 

  rclb  $1,(%esi)               // shift it into the data byte 

  decb  (%esp)                  // decrement the data decision counter 

  movb  %ch,%cl                 // recall optimal phase shift 
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  jns   tm0_isr_s1_phi_chk_0    // if not data LSB, go bounds check phase 

  movb  $3,(%esp)               // re-initialize data decision down counter 

  inc   %esi                    // increment pointer to next data byte 

  cmpl  $rx_buffer_end,%esi     // is data buffer full? 

  jae   tm0_isr_exit            // if so, exit now 

 

tm0_isr_s1_phi_chk_0:  // check for maximum phase shift 

  cmpb  $20,%cl                 // maximum phase shift? 

  jb    tm0_isr_s1_phi_chk_1    // if not, check for minimum 

  subb  $10,%cl                 // if so, skip ahead one symbol 

  jmp   tm0_isr_s1_phi_0        // decode it without reading another symbol 

 

tm0_isr_s1_phi_chk_1:  // check for miniumum phase shift 

  cmpb  $0,%cl                  // minimum phase shift? 

  ja    tm0_isr_s1_spi_check    // if not, continue decoding 

  btl   $SM_BUSY,SM_SR          // if so, check if SPI is still sampling 

  jae   tm0_isr_exit            // if not, exit now 

 

tm0_isr_s1_symbol_1:  // get symbol 

  btl   $SM_RXFIR,SM_RISR       // test RX FIFO full bit 

  jae   tm0_isr_s1_symbol_1     // loop until symbol is available 

  shll  $10,%ebx                // make room for next symbol 

  orl   SM_DR,%ebx              // or in new symbol 

  addb  $10,%cl                 // adjust phase shift 

 

tm0_isr_s1_spi_check:  // check for SPI still sampling 

  btl   $SM_BUSY,SM_SR          // check if SPI is still sampling 

  jb    tm0_isr_s1_symbol_0     // if so, get next symbol 

 

tm0_isr_exit:  // all bits have been stored 

  btl   $SM_RXOIR,SM_RISR       // did RX FIFO overflow? 

  jae   tm0_isr_spi_off         // if not, go disable SPI 

  orl   $ERR_OVERFLOW,error     // otherwise, set the overflow error flag 

 

tm0_isr_spi_off:  // disable SPI 

  movl  $0,SM_SSIENR            // disable SPI 

  btl   $SM_BUSY,SM_SR          // test for SPI busy 

  jb    tm0_isr_spi_off         // loop until no longer busy 

  andl  $(~SPIM_CLKEN),PM_CLK_EN// disable SPI clock 

   

tm0_isr_check_msg:  // check message for errors 

  movl  %esi,rx_buffer_next     // store where we left off 

  call  check_message           // check message content 

  orl   $MAN_WK,PM_CMP_PWR      // power up wake comparator 

 

  // restore context and return from interrupt 

  popl  %esi                    // remove local variable from stack 

  popl  %esi                    // restore context 

  popl  %edi 

  popl  %ebp 

  popl  %edx 

  popl  %ecx 

  popl  %ebx 

  popl  %eax 

  iret 

 

§ 
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Appendix B –Likelihood Lookup Table 

Generator Program 

The following MATLAB* source code is generates the likelihood lookup table: 

 
% all possible symbols in Boolean matrix form 

A = [(mod(0:1023,1024)>511)', ... 

     (mod(0:1023,512)>255)', ... 

     (mod(0:1023,256)>127)', ... 

     (mod(0:1023,128)>63)', ... 

     (mod(0:1023,64)>31)', ... 

     (mod(0:1023,32)>15)', ... 

     (mod(0:1023,16)>7)', ... 

     (mod(0:1023,8)>3)', ... 

     (mod(0:1023,4)>1)', ... 

     (mod(0:1023,2)>0)']; 

 

% ideal symbol models in Boolean matrix form 

S = [false,false,true,true,true,false,false,false,true,true; ...  %11 

     false,false,true,true,true,false,false,true,true,true; ...   %11 

     false,false,false,true,true,false,false,false,true,true; ... %11 

     true,true,false,false,false,true,true,true,false,false; ...  %00 

     true,true,false,false,false,true,true,false,false,false; ... %00 

     true,true,true,false,false,true,true,true,false,false; ...   %00 

     true,true,false,false,false,false,false,false,true,true; ... %01 

     true,true,false,false,false,false,false,true,true,true; ...  %01 

     true,true,true,false,false,false,false,false,true,true; ...  %01 

     false,false,true,true,true,true,true,true,false,false; ...   %10 

     false,false,true,true,true,true,true,false,false,false; ...  %10 

     false,false,false,true,true,true,true,true,false,false];     %10 

 

% generate likelihood lookup table 

lut = uint8(zeros(size(A,1),2)); % look-up table in integer  

lh = uint8(zeros(1,size(S,1)));  % likelihood table in integer  

for k = 1:size(A,1) 

    for l = 1:size(S,1) 

        lh(l) = sum(not(xor(S(l,:),A(k,:)))); % number of correct samples 

    end 

    [val, loc] = max(lh); % find maximum likelihood 

    lut(k,2) = val;       % store maximum likelihood 

    switch (loc);         % store decision bits 

        case {1,2,3}; lut(k,1) = 3; 

        case {4,5,6}; lut(k,1) = 0; 

        case {7,8,9}; lut(k,1) = 2; 

        otherwise;    lut(k,1) = 1; 

    end 

end 

 

% write likelihood lookup table as C array 

output = uint8(4*lut(:,2)+lut(:,1)); 

fid = fopen('man_lut.h','w'); 
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fprintf(fid,'unsigned char man_lut[] = {\n'); 

fprintf(fid,'\t%u,\n',output(1:end-1)); 

fprintf(fid,'\t%u};\n',output(end)); 

fclose(fid); 

 

§ 
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Appendix C  – Manchester-encoded 

Data Waveform Generator Program 

The following MATLAB* source code generates the waveform file used by the 33522A 

Arbitrary Waveform Generator to synthesize a known good Manchester-encoded 32 
byte message with embedded 16-bit CRC, duty cycle distortion, and noise: 

 
%% Parameters 

bitRate = 500000; 

overSampling = 56; 

distortion = 0; 

dataPoints = 1000000; 

ioVDD = 3.3; 

FS = 32767; 

errorRate = 0.005; 

sampleRate = bitRate*overSampling; 

triggerWidth = round(20e-6*sampleRate); 

triggerTail = round(26e-6*sampleRate); 

hiWidth = overSampling/2; 

loWidth = overSampling/2; 

zeroBit = [true(hiWidth,1);false(loWidth,1)]; 

oneBit = [false(loWidth,1);true(hiWidth,1)]; 

msg = [ 

    'f4'; 

    'c1'; 

    '00'; 

    '00'; 

    '00'; 

    '02'; 

    '00'; 

    '00'; 

    '00'; 

    '00'; 

    '00'; 

    '00'; 

    '00'; 

    '18'; 

    '4b'; 

    '71'; 

    '08'; 

    '07'; 

    'b2'; 

    'c2'; 

    '5b'; 

    '88'; 

    '40'; 

    '00'; 

    '68'; 

    '00'; 

    '00'; 

    '00'; 
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    '01'; 

    'b0'; 

    'ae'; 

    '2e' 

    ]; 

 

%% Manchester encode message 

n = size(msg,1); 

encodedMsg = false(overSampling,8*n); 

for k = 1:n; 

    byte = uint8(hex2dec(msg(k,:))); 

    for b = 7:-1:0; 

        m = (k - 1)*8 + 8 - b; 

        if bitand(byte,2^b); 

            encodedMsg(:,m) = oneBit; 

        else 

            encodedMsg(:,m) = zeroBit; 

        end 

    end 

end 

 

%% duty cycle distortion 

d = abs(distortion); 

if distortion < 0; 

    distortedMsg = ...  

        and([encodedMsg(:);false(d,1)],[false(d,1);encodedMsg(:)]); 

else 

    distortedMsg = ...  

        or([encodedMsg(:);false(d,1)],[false(d,1);encodedMsg(:)]); 

end 

 

%% noise  

noise = rand(numel(distortedMsg),1) <= errorRate; 

noiseMsg = xor(distortedMsg,noise); 

tail = false(dataPoints - triggerWidth - triggerTail - numel(noiseMsg),1); 

outputSignal = [true(triggerWidth,1); false(triggerTail,1); noiseMsg; tail]; 

 

%% Open file and write data 

fileName = 'manchester.arb'; 

str = input(['Enter file name [',fileName,']: '],'s'); 

if ~isempty(str); fileName = str; end 

fileId = fopen(fileName,'w'); 

fprintf(fileId,'Copyright:Intel Corp., 2015\n'); 

fprintf(fileId,'File Format:1.10\n'); 

fprintf(fileId,'Channel Count:1\n'); 

fprintf(fileId,'Sample Rate:%d\n',sampleRate); 

fprintf(fileId,'High Level:%d\n',ioVDD); 

fprintf(fileId,'Low Level:0\n'); 

fprintf(fileId,'Data Type:"short"\n'); 

fprintf(fileId,'Data Points:%d\n',dataPoints); 

fprintf(fileId,'Data:\n'); 

fprintf(fileId,'%d\n',FS*outputSignal); 

fclose(fileId); 

 

§ 


