

Document Number: 332919–001US

Maximum Likelihood Manchester

Decoding on the Intel® Quark™

microcontroller D1000

White Paper

October 2015

Maximum Likelihood Manchester Decoding
White Paper October 2015
2 Document Number: 332919–001US

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the
latest Intel product specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling

1-800-548-4725 or by visiting: http://www.intel.com/design/literature.htm

Intel, Intel® Quark™ and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Maximum Likelihood Manchester Decoding White Paper February 2015
Document Number: 332919–001US 3

Contents

1 Abstract ... 5

2 Introduction .. 6

3 Methods ... 7

3.1 Sampling ... 7
3.2 Likelihood Lookup ... 9
3.3 Phase Tracking .. 11
3.4 Synchronization ... 11

4 Results .. 13

5 Discussion ... 19

6 Conclusion ... 20

Appendix A – Maximum Likelihood Decoding Program .. 21

Appendix B –Likelihood Lookup Table Generator Program ... 26

Appendix C – Manchester-encoded Data Waveform Generator Program 28

Figures

Figure 1. Waveforms of NRZ Data and Clock and the Corresponding Manchester-encoded Data 6
Figure 2. Tracking Symbol Phases .. 9
Figure 3. Sample Phases.. 10
Figure 4. Ten Phase Shifts of a Ten Sample Symbol Window .. 12
Figure 5. Start of Manchester Encoded Message ... 14
Figure 6. Oscilloscope Waveforms of Received Signal in Yellow and Core Current in Red Showing

+357 ns Duty Cycle Distortion .. 15
Figure 7. Oscilloscope Waveforms of Received Signal in Yellow and Core Current in Red Showing -

357 ns Duty Cycle Distortion .. 16
Figure 8. Oscilloscope Waveforms of Received Signal in Yellow and Core Current in Red Showing -3.0

% Bit Rate Offset .. 17
Figure 9. Oscilloscope Waveforms of Received Signal in Yellow and Core Current in Red Showing

+3.5 % Bit Rate Offset .. 18

Maximum Likelihood Manchester Decoding
White Paper October 2015
4 Document Number: 332919–001US

Revision History

Date Revisio
n

Description

October 2015 001 Initial release.

§

Maximum Likelihood Manchester Decoding White Paper February 2015
Document Number: 332919–001US 5

1 Abstract

A common use of low power microcontrollers is in RFID tags. One of the modulation
schemes typically used by RFID tags is Manchester encoding. Manchester encoding is
a form of binary phase shift key modulation. This paper presents a maximum
likelihood method of decoding Manchester-encoded data. Maximum likelihood

decoding tracks bit rate offset, tolerates duty cycle distortion, and is more robust in
the presence of noise than edge decoding.

§

Maximum Likelihood Manchester Decoding
White Paper October 2015
6 Document Number: 332919–001US

2 Introduction

Manchester encoding is a form of binary phase shift key modulation where the carrier
is the bit rate clock (a square wave) phase shifted by zero or 180° depending on the
data. Manchester-encoded waveforms are shown in Figure 1. In the Manchester data
waveform, a zero bit is encoded with a falling edge at bit center and a one bit with a

rising edge at bit center. The opposite may also be used.

Figure 1. Waveforms of NRZ Data and Clock and the Corresponding Manchester-
encoded Data

0 1 1 0 0 01 1

Clock

NRZ Data

Manchester Data

The ideal undistorted waveform that the application receives for each bit should be
high for one half of the bit period and low for the other half. Which half is high and

which half is low depends on the state of the transmitted bit. In reality, the received
waveform might be noisy or distorted. The relative bit rate between transmitter and

receiver may be slightly off. The task of maximum likelihood decoding is to choose the
most likely transmitted bits given the waveform received. For this, the application
uses Bayes theorem:

 y

x
xyyx

P

P
|P|P

…where x was received and y was transmitted. This is a very powerful theorem. It

means that maximum likelihood decoding estimates the bits most likely transmitted
given the waveform actually received and prior knowledge about the system. If the
application has some prior knowledge about the probability of a one versus a zero
being transmitted and what the ideal received waveform should look like for each, the
application can build a table ahead of time containing the most likely transmitted bit

for each possible received waveform. The application can then index the table using
the actual received waveform to obtain the most likely transmitted bits.

Maximum Likelihood Manchester Decoding White Paper February 2015
Document Number: 332919–001US 7

3 Methods

This section presents the methods used to implement the maximum likelihood
Manchester decoder. The requirements for the decoder are:

 Bit rate: 500 kbps ±3 %

 Duty cycle distortion: ±350 ns

3.1 Sampling

There are multiple options for using the Intel® Quark™ microcontroller D1000to
sample the received waveform:

 Comparator – this technique has the advantage of accepting analog waveforms.

However, software must either poll the comparator or take an interrupt when the
comparator detects a threshold crossing. In either case, it will not be possible to
decode high bit rates in real time since there is no elasticity in the hardware, and
software must be ready for each transition ahead of time.

 ADC – this technique also has the advantage of accepting analog waveforms.
Moreover, it produces M-ary samples where M = 2N and N could be from 6 to 12
bits of resolution. This could prove extremely powerful if the application has some

prior knowledge about the linear system (i.e. a linear model of the channel and
receiver). However, once again it will not be possible to decode high bit rates in
real time due to the large number of CPU cycles required to do this type of
processing vs. the number of CPU cycles available in each bit period.

 SPI – this technique has the disadvantage of requiring a digital input. However, it
has the advantage of elasticity provided by a FIFO implemented in hardware; up
to 128 binary samples can be buffered in the FIFO. Software can then fall behind

in the short term so long as it can keep up with the overall sample rate.

Due to the high bit rate, the comparator and ADC sample methods are off the table.
This application will use SPI to sample the incoming signal, which frees up CPU cycles
while the hardware FIFO is buffering samples. The next item is to decide on a sample

rate (i.e. the number of samples taken in each bit period). Rather than computing
likelihood in real time, which requires a larger number of CPU cycles, this application
pre-computes the likelihood and stores it in a lookup table. This application uses the
waveform samples to index the table. The group of samples used to index the table is
commonly referred to as a symbol. A symbol contains a group of samples spanning
one or more bit periods. If the symbol spans one bit period, the decision about what
was transmitted will be a binary decision (for example, one of two states). If the

symbol spans two bit periods, the decision will be 4-ary (for example, one of four
states). If the symbol spans three bit periods, the decision will be 8-ary and so forth

The advantage of using symbols that span multiple bits is that the number of CPU
cycles available to process each symbol increases with the number of bits spanned.

Since decisions based on likelihood for each possible symbol have been pre-computed,
the cycles required to process a symbol are independent on the number of bit periods
spanned, and it is to the application’s advantage work with multi-bit symbols.

Maximum Likelihood Manchester Decoding
White Paper October 2015
8 Document Number: 332919–001US

However, the amount of memory available to hold the look-up table is limited, so the

application needs to constrain the number of bits in a symbol. For best performance,
the application should locate the table in SRAM. This puts a practical constraint on the
size of the table at less than 4 kB1 and limits the symbol size to less than 12 bits.

As shown later, the question of likelihood also bears on the choice of sample rate. In

order to assess likelihood, it’s necessary to measure the distance between all possible
symbols and the most likely symbols. The most likely symbols are those
corresponding to possible transmitted states (for example, 0 or 1 for binary symbols;
00, 01, 10 or 11 for 4-ary symbols; etc.) The greater the distance between the most
likely symbols, the lower the probability of a received symbol having equal distance to
more than one of the most likely symbols. In other words, there will be fewer ties

when making decisions about which bits were transmitted. If the number of possible
symbols is large (for example, the number of samples per symbol is large) and the
number of possible transmitted states is few, the distance between the most likely

symbols will be large. This condition corresponds to a high sample rate.

Another reason for using a high sample rate is to correct for bit rate offset by tracking

symbol phase. In order to track symbol phase, the application needs to compare the
likelihood of a received symbol with one shifted by a sample. The application then
adjusts the symbol window toward the more likely symbol – phase shifted or not. If
the number of samples per bit is too small, it will be impossible to distinguish between
phase error and a different transmitted state. This condition is illustrated in Figure 2
(a). Increasing the sample rate remedies the condition as shown in Figure 2 (b).

Ultimately, the application needs to balance the choice of sample rate to the
competing goals of maximizing CPU cycles per symbol, maximizing distance between
most likely symbols, and constraining the size of the look-up table. The optimal
balance depends on bit rate. The application needs to budget about 100 CPU cycles

per symbol. At a bit rate of 500 kbps and CPU clock frequency of 32 MHz, 10-bit 4-ary
symbols strike a good balance at 2 bits per symbol, 5 samples per encoded bit, and a

1024 entry lookup table.

The SPI sample rate is programmable in even divisions of the CPU clock frequency.
The application needs the following sample rate:

𝑓𝑆 ≥ 𝜌𝑓𝐵

…where 𝜌 equals the minimum number of samples per bit and 𝑓𝐵 is the bit rate. At five

samples per bit and a 500 kbps bit rate, the application needs a sample rate of at
least 2.5 MSps. A divisor of 12 yields a sample rate of 2.667 MSps. This produces 5 ⅓

samples per bit or 10 ⅔ samples per 4-ary symbol.

1 While there is 8 kB of SRAM available, reprogramming flash can require up

to 4 kB of buffer allocated on the stack. Also, less than 4 kB of data flash is

available for storing initialized data.

Maximum Likelihood Manchester Decoding White Paper February 2015
Document Number: 332919–001US 9

As shown in Figure 2, at four samples per bit, a binary 1 waveform is shown that lags
by one sample cannot be distinguished from a binary 0 waveform that leads by one
sample. At five samples per bit, a waveform that lags or leads by one sample is closer
to its transmitted waveform than it is to the alternate waveform.

Figure 2. Tracking Symbol Phases

One sample phase lead

One sample phase lag

Sample times

S = 11

S = 00

Ŝ = ??

One sample phase lead

One sample phase lag

Sample times

S = 11

S = 00

Ŝ = 11

Ŝ = 00

(a) 4 samples per symbol:

(b) 5 samples per symbol:

3.2 Likelihood Lookup

Ideal models for the 4-ary symbols are shown in Figure 3. The middle model for each
4-ary state (i.e. 00, 01, 10 and 11) corresponds to perfect phase alignment. Since
phase can be adjusted only in discrete one sample increments, symbols that lead or

lag in phase by less than ½ sample are equally likely and should be given the same
weight as those with perfect alignment. These leading and lagging models are shown
below and above the models with perfect alignment. Symbols that lead or lag by more
than ½ sample can be brought closer to perfect alignment by shifting phase one or

more samples. These must be weighted less than ideal symbols. The weight that the
application assigns to each possible symbol from binary 0000000000 to 1111111111
should reflect how closely correlated it is to the most closely correlated ideal model.

Logically, correlation can be expressed as the number of matching samples:

𝑊𝑆 = ∑𝑅[𝑛] ⊕ 𝑌𝑆[𝑛]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
9

𝑛=0

Maximum Likelihood Manchester Decoding
White Paper October 2015
10 Document Number: 332919–001US

…where 𝑊𝑆 is the correlation strength or weight corresponding to ideal symbol model

for transmit state 𝑆, 𝑅[𝑛] is the 𝑛th sample of the received symbol, 𝑌𝑆[𝑛] is the 𝑛th
sample of the ideal symbol model for transmit state 𝑆, and ⊕ is the exclusive or

operator.

As shown in Figure 3, at 10 ⅔ samples per symbol, each of the 4-ary symbols has

three ideal models. Perfect phase alignment is shown in the middle model. Top models
correspond to ⅓ sample of phase lag. Bottom models correspond to ⅓ sample phase

lead. All twelve models carry the maximum weight of 10.

Figure 3. Sample Phases

1 1 1 0 0 1 1 1 0 0

1 1 0 0 0 1 1 1 0 0

1 1 0 0 0 1 1 0 0 0

00 Symbol Models

0001111100

0011111100

0011111000

10 Symbol Models

01 Symbol Models

1110011100

1100011100

1100011000

11 Symbol Models

1110000011

1100000011

1100000111

Maximum Likelihood Manchester Decoding White Paper February 2015
Document Number: 332919–001US 11

The likelihood lookup table contains 1024 entries (one for each possible received
symbol 𝑅). Each entry contains the maximum correlation weight between the symbol

𝑅 and the ideal symbol models:

𝑊𝑅 = max(𝑊00,𝑊01,𝑊10,𝑊11)

as well as the decision corresponding to the highest weight:

𝑆𝑅 ∈ {00, 01, 10, 11}

The application indexes the table with each received symbol to obtain a decision
regarding the transmitted bits and a weight expressing the likelihood that that these

bits were transmitted given that this symbol was received.

3.3 Phase Tracking

Since the number of samples per symbol is fractional but the time resolution of the

sampling window is discrete, each time the application moves the symbol sample
window forward it will be either lagging or leading in phase. For example: assuming
perfect symbol alignment at the start, advancing the symbol sample window forward
by 10 samples results in the next symbol lagging by ⅔ sample in phase. Advancing 11

samples results in the next symbol leading by ⅓ sample in phase. Furthermore, the

application requirements state that bit rate offset between transmitter and receiver
can be as high as ±3 %. Therefore, instead of always advancing the symbol sample
window by some predetermined pattern (for example, 11, 11, 10 samples), the

application will test both 10 and 11 sample advancements to see which results in the
greatest correlation strength. This allows the application to track the symbol phase in
the presence of bit rate offset.

3.4 Synchronization

In order to properly decode symbols, the application must first synchronize the symbol

sample window with the symbol boundaries in the received stream of samples. Figure
4 illustrates the procedure. Assume that the message begins with the symbol that
encodes information bits 11 after receiving all zero samples prior to that. The
application receives groups of ten samples from the SPI peripheral. Buffering up at
least 20 samples, the application slides a ten-sample window over the 20 buffered

samples, seeking alignment with the first symbol in the message. The first three
waveforms show the ideal symbol models corresponding to the 11 state. The next ten
waveforms show the ten-sample window obtained with each shift of the window as it
slides over the twenty-sample buffer. The weight of each ten-sample window and its
phase relative to the true start of message are listed in columns to the right of the
waveforms. The perfectly aligned window and ideal symbol model are indicated in bold
typeface. It can be seen that the highest weight of an unaligned window is eight. Any

weight higher than this indicates that synchronization has been achieved. For this
application, a value of nine was selected; this is large enough to ensure
synchronization while tolerating one sample error. If none of the ten sample windows
carry a weight of at least nine, the next ten-sample group received from SPI is
appended as the oldest ten-sample group is ejected from the buffer and the next ten
windows are tested. This continues until synchronization is achieved.

Maximum Likelihood Manchester Decoding
White Paper October 2015
12 Document Number: 332919–001US

After synchronization is achieved, the symbol window advances 10 or 11 samples with
each ten-sample group received from SPI. Eventually, the window will reach the edge
of the twenty-sample buffer. When this happens, an additional ten-sample group from
SPI is appended before the symbol window advances.

As shown in Figure 4, ten phase shifts of a ten-sample symbol window over 19
samples prior to and including the start of a message. Ideal symbol models for the
known message preamble are shown in the first three rows. Bold highlighted rows are
a phase aligned.

Figure 4. Ten Phase Shifts of a Ten Sample Symbol Window

1100011100

011100

0011100

00011100

100011100

1100011100

0

00

000

0000

Weight

Ideal model

5

3

5

8

10

111000000 70

11000000 800

1000000 7000

000000 60000

1100011000 Ideal model -⅓

1110011100 Ideal model +⅓

Phase

-7

-8

-6

-4

-5

-3

-1

-2

0

110001110 70 +1

§

Maximum Likelihood Manchester Decoding White Paper February 2015
Document Number: 332919–001US 13

4 Results

The maximum likelihood Manchester decoder described in previous sections was
tested using an Agilent* 33522A Arbitrary Waveform Generator to synthesize a known
good 32-byte message with embedded 16-bit CRC. The firmware decodes the
message and verifies the CRC. It then prints a message to the UART indicating how

many bytes were received, the message content, and any errors encountered. Figure
5 shows the beginning portion of a test message. The 20 µs pulse that precedes the
message is used to wake the D1000 from the 2 µA standby state. Some protocols,
such as IEEE Std. 802.3, provide a preamble with which receivers can synchronize. In

this case, the preamble can be used for both wakeup and synchronization and no
wakeup pulse is required.

Tests of duty cycle distortion are shown in Figure 6 and Figure 7. In Figure 6, the high

phase of the signal is stretched and the low phase shortened by 357 ns. In Figure 7,
the low phase of the signal is stretched and the high phase shortened by 357 ns. In
both cases, decoded messages were free of errors.

Tests of bit rate offset are shown in Figure 8 and Figure 9. In Figure 8, bit rate was

decreased by 3.0 %. In Figure 9, bit rate was increased by 3.5 %. In both cases,
decoded messages were free of errors.

Finally, sample error injection at rates of 0.005, 0.01, and 0.015 showed that the

proposed method is indeed robust in the presence of noise. No message errors
occurred in more than 4000 messages decoded in the 0.005 and 0.01 error rate
cases. The message error rate was 0.266 in the 0.015 sample error rate case.

As shown in Figure 5, oscilloscope waveforms of the received signal in yellow and the

core current in red show start of the Manchester-encoded message. A 20 µs wakeup
pulse precedes the Manchester encoded message.

Maximum Likelihood Manchester Decoding
White Paper October 2015
14 Document Number: 332919–001US

Figure 5. Start of Manchester Encoded Message

Maximum Likelihood Manchester Decoding White Paper February 2015
Document Number: 332919–001US 15

Figure 6. Oscilloscope Waveforms of Received Signal in Yellow and Core Current in Red
Showing +357 ns Duty Cycle Distortion

Maximum Likelihood Manchester Decoding
White Paper October 2015
16 Document Number: 332919–001US

Figure 7. Oscilloscope Waveforms of Received Signal in Yellow and Core Current in Red
Showing -357 ns Duty Cycle Distortion

Maximum Likelihood Manchester Decoding White Paper February 2015
Document Number: 332919–001US 17

Figure 8. Oscilloscope Waveforms of Received Signal in Yellow and Core Current in Red
Showing -3.0 % Bit Rate Offset

Maximum Likelihood Manchester Decoding
White Paper October 2015
18 Document Number: 332919–001US

Figure 9. Oscilloscope Waveforms of Received Signal in Yellow and Core Current in Red
Showing +3.5 % Bit Rate Offset

§

Maximum Likelihood Manchester Decoding White Paper February 2015
Document Number: 332919–001US 19

5 Discussion

During the synchronization phase, ten different phase shifts of the symbol sample
window are tested for each new symbol received. The time required to complete these
computations is greater than a symbol period. The receive FIFO in the SPI peripheral
provides the elasticity needed to prevent loss of data. However, there is a limit to the

amount of time the application can spend in the synchronization phase before the
FIFO overflows. While the developers checked for an overflow condition and found
none, the maximum time in the synchronization phase before the FIFO overflows has
not been characterized. This could become an issue if the synchronization window

opens long before a message arrives. If this situation is unavoidable, a check of each
new symbol for a non-zero condition should be used as a necessary pre-requisite to
enter the synchronization phase. This non-zero check is much faster than the

synchronization check and will prevent FIFO overflows.

For this application, 10-bit 4-ary symbols were selected because they strike a good
balance between competing goals of maximizing CPU cycles per symbol, maximizing
distance between most likely symbols, and constraining the size of the look-up table.

The optimal balance depends on bit rate, the amount of memory that can be allocated
to the likelihood lookup table, and the CPU clock frequency. At lower bit rates, 10-bit
2-ary symbols would increase the distance between most likely symbols, improving
robustness to errors and distortion. Alternately, if a larger table is possible, 12-bit 4-
ary symbols would have the same effect to a lesser extent without compromising bit
rate.

Bit rate offset is limited to ±3 % in this example. Larger offsets might also be

accommodated with an increased number of likelihood tests at larger phase shifts.
However, as bit rate offset increases, the mismatch between received and ideal
symbol models also increases, reducing the likelihood that proper alignment can be
maintained. Higher sample rates may mitigate this effect somewhat. Further

experimentation is needed in order to characterize performance at larger bit rate
offsets and higher sample rates.

§

Maximum Likelihood Manchester Decoding
White Paper October 2015
20 Document Number: 332919–001US

6 Conclusion

This paper presented a method for decoding Manchester-encoded data in the presence
of noise and distortion. The selected method consists of over-sampling the received
baseband waveform and looking up pre-computed likelihood and state decisions from
a table. Prior to decoding, symbol synchronization is achieved by sliding a window

over the received symbol stream until a strong likelihood indicates that a particular
phase shift correctly aligns the symbol window with a transmitted symbol. Alignment
is maintained during decoding by testing the likelihood of phase-leading and phase-
lagging symbol windows and choosing the alignment with the greatest likelihood.

Real-time 500 kbps decoding was achieved with CPU clock frequency of 32 MHz.
Furthermore, this method proved robust in the presence of bit rate offset, duty cycle
distortion, and noise.

§

Maximum Likelihood Manchester Decoding White Paper February 2015
Document Number: 332919–001US 21

Appendix A – Maximum Likelihood

Decoding Program

The following assembly language source code is for the timer 0 interrupt service

routine, which contains the maximum likelihood Manchester decoding algorithm. Timer
0 was started when the trigger pulse was detected. Its expiration opens the
synchronization window at ~10 µs prior to start of message. Once started, the SPI
peripheral will deliver 160 10-bit symbols at a rate of 266667 symbols per second.

The maximum likelihood lookup table man_lut is a 1024-byte table containing

weights in bits 2-5 and decisions in bits 0-1.

//

 // define symbols and allocate storage for timer 0 interrupt handler

 //

 .global timer0_interrupt_handler_stub

 .extern check_message

 .extern man_lut

 .extern error

 .extern PM_CMP_POL

 .extern PM_CMP_INTSTAT

 .extern PM_CMP_INT_EN

 .extern PM_CMP_PWR

 .extern LA_EOIR

 .extern T0_CTL_REG

 .extern T0_EOI

 .extern PM_CLK_EN

 .extern SM_SSIENR

 .extern SM_DR

 .extern SM_RISR

 .set MAXBITS,256 // maximum message 256 bits

 .set MINWEIGHT,(4*9+3)// minimum weight for synchronization

 .set T0_CLKEN,(1<<4) // mask for timer 0 clock enable

 .set SPIM_CLKEN,(1<<1)//mask for SPI clock enable

 .set ERR_OVERFLOW,(1<<0)// mask for overflow error

 .set SM_BUSY,0 // SPI busy status bit

 .set SM_RXOIR,3 // SPI RX FIFO overflow status bit

 .set SM_RXFIR,4 // SPI RX FIFO full status bit

 .bss

 .align 4

 .global rx_buffer

rx_buffer: // storage for data bits

 .space MAXBITS/8 // maximum message in bytes

 .global rx_buffer_end

rx_buffer_end:

 .global rx_buffer_next

rx_buffer_next: // pointer to next location in data buffer

 .space 4

Maximum Likelihood Manchester Decoding
White Paper October 2015
22 Document Number: 332919–001US

 .text

 .align 16

timer0_interrupt_handler_stub: // begin handler

 pushl %eax // save context

 pushl %ebx

 pushl %ecx

 pushl %edx

 pushl %ebp

 pushl %edi

 pushl %esi

 pushl %esi // reserve local variable on stack

tm0_isr_stop_timer: // stop timer and clear interrupts

 xorl %eax,%eax // clear register

 movl %eax,T0_CTL_REG // stop timer

 movl T0_EOI,%ebx // clear interrupt from timer

 movl %eax,LA_EOIR // clear interrupt from APIC

 andl $(~T0_CLKEN),PM_CLK_EN // disable timer clock

tm0_isr_start_spi: // start SPI sampling

 orl $SPIM_CLKEN,PM_CLK_EN // enable SPI clock

 movl $1,SM_SSIENR // enable SPI

 movl %eax,SM_DR // write dummy word to SPI TX FIFO

tm0_isr_initial_values: // initialize the various counters and pointers

 lea man_lut,%edi // get pointer to maximum likelihood LUT

 lea rx_buffer,%esi // get pointer to data buffer

 movl $0x3FF,%ebp // 10-bit symbol mask

 movl %eax,error // clear error flags

 movb $3,(%esp) // initial data decision down counter

tm0_isr_s0_symbol_0: // get first symbol

 btl $SM_RXFIR,SM_RISR // test RX FIFO full bit

 jae tm0_isr_s0_symbol_1 // loop until symbol is available

 movl SM_DR,%ebx // read RX FIFO

tm0_isr_s0_symbol_1: // get second symbol

 btl $SM_RXFIR,SM_RISR // test RX FIFO full bit

 jae tm0_isr_s0_symbol_1 // loop until symbol is available

 shll $10,%ebx // make room for next symbol

 orl SM_DR,%ebx // or in new symbol

tm0_isr_s0_symbol_2: // get third symbol

 btl $SM_RXFIR,SM_RISR // test RX FIFO full bit

 jae tm0_isr_s0_symbol_2 // loop until symbol is available

 shll $10,%ebx // make room for next symbol

 orl SM_DR,%ebx // or in new symbol

tm0_isr_s0_phi_0: // get likelihood at 0 degrees

 movb $19,%cl // initial phase shift

 movl %ebx,%eax // get last three symbols

 shrl %cl,%eax // shift phase

 andl %ebp,%eax // mask off all but phase shifted symbol

 movb (%edi,%eax,1),%dh // get likelihood

 cmpb $MINWEIGHT,%dh // does this weight meet the minimum?

 jae tm0_isr_s1_entry // if so, start processing packet

tm0_isr_s0_phi_1: // get likelihood at +36 degrees

 decb %cl // decrement phase shift

Maximum Likelihood Manchester Decoding White Paper February 2015
Document Number: 332919–001US 23

 movl %ebx,%eax // get last three symbols

 shrl %cl,%eax // shift phase

 andl %ebp,%eax // mask off all but phase shifted symbol

 movb (%edi,%eax,1),%dh // get likelihood

 cmpb $MINWEIGHT,%dh // does this weight meet the minimum?

 jae tm0_isr_s1_entry // if so, start processing packet

tm0_isr_s0_phi_2: // get likelihood at +72 degrees

 decb %cl // decrement phase shift

 movl %ebx,%eax // get last three symbols

 shrl %cl,%eax // shift phase

 andl %ebp,%eax // mask off all but phase shifted symbol

 movb (%edi,%eax,1),%dh // get likelihood

 cmpb $MINWEIGHT,%dh // does this weight meet the minimum?

 jae tm0_isr_s1_entry // if so, start processing packet

tm0_isr_s0_phi_3: // get likelihood at +108 degrees

 decb %cl // decrement phase shift

 movl %ebx,%eax // get last three symbols

 shrl %cl,%eax // shift phase

 andl %ebp,%eax // mask off all but phase shifted symbol

 movb (%edi,%eax,1),%dh // get likelihood

 cmpb $MINWEIGHT,%dh // does this weight meet the minimum?

 jae tm0_isr_s1_entry // if so, start processing packet

tm0_isr_s0_phi_4: // get likelihood at +144 degrees

 decb %cl // decrement phase shift

 movl %ebx,%eax // get last three symbols

 shrl %cl,%eax // shift phase

 andl %ebp,%eax // mask off all but phase shifted symbol

 movb (%edi,%eax,1),%dh // get likelihood

 cmpb $MINWEIGHT,%dh // does this weight meet the minimum?

 jae tm0_isr_s1_entry // if so, start processing packet

tm0_isr_s0_phi_5: // get likelihood at +180 degrees

 decb %cl // decrement phase shift

 movl %ebx,%eax // get last three symbols

 shrl %cl,%eax // shift phase

 andl %ebp,%eax // mask off all but phase shifted symbol

 movb (%edi,%eax,1),%dh // get likelihood

 cmpb $MINWEIGHT,%dh // does this weight meet the minimum?

 jae tm0_isr_s1_entry // if so, start processing packet

tm0_isr_s0_phi_6: // get likelihood at +216 degrees

 decb %cl // decrement phase shift

 movl %ebx,%eax // get last three symbols

 shrl %cl,%eax // shift phase

 andl %ebp,%eax // mask off all but phase shifted symbol

 movb (%edi,%eax,1),%dh // get likelihood

 cmpb $MINWEIGHT,%dh // does this weight meet the minimum?

 jae tm0_isr_s1_entry // if so, start processing packet

tm0_isr_s0_phi_7: // get likelihood at +252 degrees

 decb %cl // decrement phase shift

 movl %ebx,%eax // get last three symbols

 shrl %cl,%eax // shift phase

 andl %ebp,%eax // mask off all but phase shifted symbol

 movb (%edi,%eax,1),%dh // get likelihood

 cmpb $MINWEIGHT,%dh // does this weight meet the minimum?

Maximum Likelihood Manchester Decoding
White Paper October 2015
24 Document Number: 332919–001US

 jae tm0_isr_s1_entry // if so, start processing packet

tm0_isr_s0_phi_8: // get likelihood at +288 degrees

 decb %cl // decrement phase shift

 movl %ebx,%eax // get last three symbols

 shrl %cl,%eax // shift phase

 andl %ebp,%eax // mask off all but phase shifted symbol

 movb (%edi,%eax,1),%dh // get likelihood

 cmpb $MINWEIGHT,%dh // does this weight meet the minimum?

 jae tm0_isr_s1_entry // if so, start processing packet

tm0_isr_s0_phi_9: // get likelihood at +324 degrees

 decb %cl // decrement phase shift

 movl %ebx,%eax // get last three symbols

 shrl %cl,%eax // shift phase

 andl %ebp,%eax // mask off all but phase shifted symbol

 movb (%edi,%eax,1),%dh // get likelihood

 cmpb $MINWEIGHT,%dh // does this weight meet the minimum?

 jae tm0_isr_s1_entry // if so, start processing packet

tm0_isr_s0_spi_check: // check for SPI still sampling

 btl $SM_BUSY,SM_SR // check if SPI is still sampling

 jb tm0_isr_s0_symbol_2 // if so, get next symbol from RX FIFO

 jmp tm0_isr_exit // otherwise, exit now

 .align 16

tm0_isr_s1_symbol_0: // get symbol

 btl $SM_RXFIR,SM_RISR // test RX FIFO full bit

 jae tm0_isr_s1_symbol_0 // loop until symbol is available

 shll $10,%ebx // make room for next symbol

 orl SM_DR,%ebx // or in new symbol

tm0_isr_s1_phi_0: // get likelihood at 0 degrees

 movl %ebx,%eax // get last three symbols

 shrl %cl,%eax // shift phase

 andl %ebp,%eax // mask off all but phase shifted symbol

 movb (%edi,%eax,1),%dh // get likelihood

tm0_isr_s1_entry: // entry point to decode phase

 movb %cl,%ch // tentative optimal phase shift

tm0_isr_s1_phi_1: // get likelihood at +36 degrees

 decb %cl // decrement phase shift

 movl %ebx,%eax // get last three symbols

 shrl %cl,%eax // shift phase

 andl %ebp,%eax // mask off all but phase shifted symbol

 movb (%edi,%eax,1),%dl // get likelihood

 cmpb %dl,%dh // is shifted symbol more or equally likely?

 ja tm0_isr_data_bit // if not, store most likely data bit

 movb %dl,%dh // if so, update weight

 movb %cl,%ch // update optimal phase shift

tm0_isr_data_bit: // store the data bits

 shrb $1,%dh // shift the hard decision MSB into carry

 rclb $1,(%esi) // shift it into the data byte

 shrb $1,%dh // shift the hard decision LSB into carry

 rclb $1,(%esi) // shift it into the data byte

 decb (%esp) // decrement the data decision counter

 movb %ch,%cl // recall optimal phase shift

Maximum Likelihood Manchester Decoding White Paper February 2015
Document Number: 332919–001US 25

 jns tm0_isr_s1_phi_chk_0 // if not data LSB, go bounds check phase

 movb $3,(%esp) // re-initialize data decision down counter

 inc %esi // increment pointer to next data byte

 cmpl $rx_buffer_end,%esi // is data buffer full?

 jae tm0_isr_exit // if so, exit now

tm0_isr_s1_phi_chk_0: // check for maximum phase shift

 cmpb $20,%cl // maximum phase shift?

 jb tm0_isr_s1_phi_chk_1 // if not, check for minimum

 subb $10,%cl // if so, skip ahead one symbol

 jmp tm0_isr_s1_phi_0 // decode it without reading another symbol

tm0_isr_s1_phi_chk_1: // check for miniumum phase shift

 cmpb $0,%cl // minimum phase shift?

 ja tm0_isr_s1_spi_check // if not, continue decoding

 btl $SM_BUSY,SM_SR // if so, check if SPI is still sampling

 jae tm0_isr_exit // if not, exit now

tm0_isr_s1_symbol_1: // get symbol

 btl $SM_RXFIR,SM_RISR // test RX FIFO full bit

 jae tm0_isr_s1_symbol_1 // loop until symbol is available

 shll $10,%ebx // make room for next symbol

 orl SM_DR,%ebx // or in new symbol

 addb $10,%cl // adjust phase shift

tm0_isr_s1_spi_check: // check for SPI still sampling

 btl $SM_BUSY,SM_SR // check if SPI is still sampling

 jb tm0_isr_s1_symbol_0 // if so, get next symbol

tm0_isr_exit: // all bits have been stored

 btl $SM_RXOIR,SM_RISR // did RX FIFO overflow?

 jae tm0_isr_spi_off // if not, go disable SPI

 orl $ERR_OVERFLOW,error // otherwise, set the overflow error flag

tm0_isr_spi_off: // disable SPI

 movl $0,SM_SSIENR // disable SPI

 btl $SM_BUSY,SM_SR // test for SPI busy

 jb tm0_isr_spi_off // loop until no longer busy

 andl $(~SPIM_CLKEN),PM_CLK_EN// disable SPI clock

tm0_isr_check_msg: // check message for errors

 movl %esi,rx_buffer_next // store where we left off

 call check_message // check message content

 orl $MAN_WK,PM_CMP_PWR // power up wake comparator

 // restore context and return from interrupt

 popl %esi // remove local variable from stack

 popl %esi // restore context

 popl %edi

 popl %ebp

 popl %edx

 popl %ecx

 popl %ebx

 popl %eax

 iret

§

Maximum Likelihood Manchester Decoding
White Paper October 2015
26 Document Number: 332919–001US

Appendix B –Likelihood Lookup Table

Generator Program

The following MATLAB* source code is generates the likelihood lookup table:

% all possible symbols in Boolean matrix form

A = [(mod(0:1023,1024)>511)', ...

 (mod(0:1023,512)>255)', ...

 (mod(0:1023,256)>127)', ...

 (mod(0:1023,128)>63)', ...

 (mod(0:1023,64)>31)', ...

 (mod(0:1023,32)>15)', ...

 (mod(0:1023,16)>7)', ...

 (mod(0:1023,8)>3)', ...

 (mod(0:1023,4)>1)', ...

 (mod(0:1023,2)>0)'];

% ideal symbol models in Boolean matrix form

S = [false,false,true,true,true,false,false,false,true,true; ... %11

 false,false,true,true,true,false,false,true,true,true; ... %11

 false,false,false,true,true,false,false,false,true,true; ... %11

 true,true,false,false,false,true,true,true,false,false; ... %00

 true,true,false,false,false,true,true,false,false,false; ... %00

 true,true,true,false,false,true,true,true,false,false; ... %00

 true,true,false,false,false,false,false,false,true,true; ... %01

 true,true,false,false,false,false,false,true,true,true; ... %01

 true,true,true,false,false,false,false,false,true,true; ... %01

 false,false,true,true,true,true,true,true,false,false; ... %10

 false,false,true,true,true,true,true,false,false,false; ... %10

 false,false,false,true,true,true,true,true,false,false]; %10

% generate likelihood lookup table

lut = uint8(zeros(size(A,1),2)); % look-up table in integer

lh = uint8(zeros(1,size(S,1))); % likelihood table in integer

for k = 1:size(A,1)

 for l = 1:size(S,1)

 lh(l) = sum(not(xor(S(l,:),A(k,:)))); % number of correct samples

 end

 [val, loc] = max(lh); % find maximum likelihood

 lut(k,2) = val; % store maximum likelihood

 switch (loc); % store decision bits

 case {1,2,3}; lut(k,1) = 3;

 case {4,5,6}; lut(k,1) = 0;

 case {7,8,9}; lut(k,1) = 2;

 otherwise; lut(k,1) = 1;

 end

end

% write likelihood lookup table as C array

output = uint8(4*lut(:,2)+lut(:,1));

fid = fopen('man_lut.h','w');

Maximum Likelihood Manchester Decoding White Paper February 2015
Document Number: 332919–001US 27

fprintf(fid,'unsigned char man_lut[] = {\n');

fprintf(fid,'\t%u,\n',output(1:end-1));

fprintf(fid,'\t%u};\n',output(end));

fclose(fid);

§

Maximum Likelihood Manchester Decoding
White Paper October 2015
28 Document Number: 332919–001US

Appendix C – Manchester-encoded

Data Waveform Generator Program

The following MATLAB* source code generates the waveform file used by the 33522A

Arbitrary Waveform Generator to synthesize a known good Manchester-encoded 32
byte message with embedded 16-bit CRC, duty cycle distortion, and noise:

%% Parameters

bitRate = 500000;

overSampling = 56;

distortion = 0;

dataPoints = 1000000;

ioVDD = 3.3;

FS = 32767;

errorRate = 0.005;

sampleRate = bitRate*overSampling;

triggerWidth = round(20e-6*sampleRate);

triggerTail = round(26e-6*sampleRate);

hiWidth = overSampling/2;

loWidth = overSampling/2;

zeroBit = [true(hiWidth,1);false(loWidth,1)];

oneBit = [false(loWidth,1);true(hiWidth,1)];

msg = [

 'f4';

 'c1';

 '00';

 '00';

 '00';

 '02';

 '00';

 '00';

 '00';

 '00';

 '00';

 '00';

 '00';

 '18';

 '4b';

 '71';

 '08';

 '07';

 'b2';

 'c2';

 '5b';

 '88';

 '40';

 '00';

 '68';

 '00';

 '00';

 '00';

Maximum Likelihood Manchester Decoding White Paper February 2015
Document Number: 332919–001US 29

 '01';

 'b0';

 'ae';

 '2e'

];

%% Manchester encode message

n = size(msg,1);

encodedMsg = false(overSampling,8*n);

for k = 1:n;

 byte = uint8(hex2dec(msg(k,:)));

 for b = 7:-1:0;

 m = (k - 1)*8 + 8 - b;

 if bitand(byte,2^b);

 encodedMsg(:,m) = oneBit;

 else

 encodedMsg(:,m) = zeroBit;

 end

 end

end

%% duty cycle distortion

d = abs(distortion);

if distortion < 0;

 distortedMsg = ...

 and([encodedMsg(:);false(d,1)],[false(d,1);encodedMsg(:)]);

else

 distortedMsg = ...

 or([encodedMsg(:);false(d,1)],[false(d,1);encodedMsg(:)]);

end

%% noise

noise = rand(numel(distortedMsg),1) <= errorRate;

noiseMsg = xor(distortedMsg,noise);

tail = false(dataPoints - triggerWidth - triggerTail - numel(noiseMsg),1);

outputSignal = [true(triggerWidth,1); false(triggerTail,1); noiseMsg; tail];

%% Open file and write data

fileName = 'manchester.arb';

str = input(['Enter file name [',fileName,']: '],'s');

if ~isempty(str); fileName = str; end

fileId = fopen(fileName,'w');

fprintf(fileId,'Copyright:Intel Corp., 2015\n');

fprintf(fileId,'File Format:1.10\n');

fprintf(fileId,'Channel Count:1\n');

fprintf(fileId,'Sample Rate:%d\n',sampleRate);

fprintf(fileId,'High Level:%d\n',ioVDD);

fprintf(fileId,'Low Level:0\n');

fprintf(fileId,'Data Type:"short"\n');

fprintf(fileId,'Data Points:%d\n',dataPoints);

fprintf(fileId,'Data:\n');

fprintf(fileId,'%d\n',FS*outputSignal);

fclose(fileId);

§

