Summary

The SDI (Serial Digital Interface) FPGA IP and other highly optimised FPGA IP cores are building blocks that can be combined to provide SDI format gearbox and conversion functionality. Gearbox functionality allows any SDI video format of one link type, for example quad link 3G-SDI, to be converted to another link type with the same frame rate and color space, for example 12G-SDI. Conversion functionality allows the conversion of any SDI video link type, image size, frame rate or color space to be converted to any other.

Intel® provides a large range of complementary IP cores for video processing and connection. These IP cores can be supplied as discrete blocks for inclusion in your own designs, as single chip solutions or Intel Design Services can provide a bespoke solution which can be tailored to your specific needs.

The following are some typical examples of the implementation of Intel's IP Cores for SDI format Gearbox and conversion.
Example of 4K60 2 Sample Interleave Gearbox

SMPTE SDI specifications define the use of 2 sample interleave (2SI) as the method of encoding video for 4K and UHD TV over quad 3G-SDI and single link 6G-SDI or 12G-SDI links.

This diagram shows a typical implementation of Intel’s SDI IP to support 2 sample interleave SDI format gearbox functionality.

Here the SDI Rx IP is connected to a Gearbox block and the output of the Gearbox block is connected to the SDI Tx IP.

The IP blocks are configured by an on-chip processor (for example ARM). This allows the selection of the individual links that make up the SDI video signal and the SMPTE virtual video streams that are contained within each link.

The Gearbox re-orders the input video and ancillary data to the chosen output video format.

Example of 4K60 2SI + Square Division Gearbox

Early developers of 4K equipment adopted a square division approach to transferring 4K material over quad link 3G-SDI where each link is effectively a standard HD (1920x1080) image. Although square division was easier to adopt it is much harder to process and adds delay, hardware and cost.

This diagram shows a typical implementation of SDI IP to support both square division and 2 sample interleave SDI format gearbox functionality.

Here the SDI Rx IP is connected to a 5 channel DMA block that allows the pixel data to be reordered (in the example; from square division to 2 sample interleave). The output of the DMA block is connected to the SDI Tx IP.

The IP blocks are configured by an on-chip processor (for example; ARM or any AXI4-Lite CPU). This allows the selection of the individual links that make up the SDI video signal and the SMPTE virtual video streams that are contained within each link.

The memory interface controls the DMA access to externally connected DDR memory.

Figure 1. Functional block diagram of 4K60 2 Sample Interleave Gearbox FPGA IP

Figure 2. Functional block diagram of 4K60 2SI + Square Division Gearbox FPGA IP
Example of SDI Cross Converter

Where conversion from one SDI video format (link type, image size, frame rate and color space) to another is required, the OSVP (Omnitek Scalable Video Processor) FPGA IP Core can be used with the SDI IP Cores to allow image size, frame rate and color space conversion.

This diagram shows a typical implementation of the SDI IP and the OSVP IP Cores to provide video format conversion functionality.

Here the SDI Rx IP is connected to the OSVP IP Core which allows the input video image to be re-sized, the frame rate converted and the color space converted. The output of the OSVP IP Core is connected to the SDI Tx IP.

The memory interface controls the DMA access to externally connected DDR memory.

In all these examples the IP Blocks are controlled using an ARM processor or any AXI4-Lite CPU.

Figure 3. Functional block diagram of SDI Cross Converter FPGA IP

Intel provides these materials as-is, with no express or implied warranties. All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change without notice. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No product or component can be absolutely secure. Check with your system manufacturer or retailer or learn more at http://intel.com. Some results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance. Intel and the Intel logo are trademarks of Intel Corporation in the United States and other countries. *Other names and brands may be claimed as the property of others.